The drill-out, clean-up, and testing of a hydraulically fractured well is critical to ensure stimulation success. This period is important both for production and environmental reasons, due to the high risk of gas release. Most wells require a sand separator during clean-up, which are a source of fugitive emissions. These emissions often go unreported during flowback due to the challenge in their quantification.

This work improves on a study by Wasfy et al (SPE, 2019) which investigated sand separator fugitive emissions. The analysis is improved by categorizing the differences in draining mechanisms between four different separator styles: vertical cyclonic separators, horizontal separators, spherical separators, and vortex separators. A simple 3-stage mathematical model is presented to calculate emissions based on drain duration for online sand separators which are drained without isolating the vessel. A vortex separator was found to provide the lowest overall fugitive emissions release. Prior work was found to have significantly underestimated the emissions released by horizontal separators.

Field experiments were performed using freestanding atmospheric gas plume sensors to validate the model. Measured gas releases were within 6% of the volume predicted by the 3-stage model at field conditions. This model can be used by engineers to accurately assess different styles of sand separators in hydraulic fracturing, allowing for more accurate reporting and quantification of fugitive emissions.

What’s the value of a sand separator?

We set out to answer that question in one of the most challenging environments in the US for sand removal, in the heart of the Bakken in North Dakota. On a day by day basis, the volumes of sand that come back from Bakken flowbacks are some of the highest around. In a recent 4-day field trial, we put our Sandtinel Defender and Sandtinel Maverick sand separators to the test in a head-to-head flowback comparison to see how they handled the high oil cut fields of North Dakota. In 4 days, the two vessels removed over 23,400 lb of sand from the system. The efficiency was measured by independent testers with hourly samples upstream and downstream of the separators, who saw an overall efficiency from the Sandtinel Defender of 95% and from the Sandtinel Maverick of 99% sand removal.

The sand volumes themselves don’t even tell the full story – we took samples of sand upstream and downstream of our Sandtinel Maverick to study the change in particle size. Using our in-house laser diffraction services, we were able to analyze these samples to see the particle size distribution before and after the Sandtinel unit. The sand entering into the vessel had a large d50 (median sand size) of 236 microns. Between these two wells, that’s over 5,800 lb of sand per day rushing through the system at almost a 60 mesh size. That kind of sand volume and size is hugely destructive to piping, valves, and other surface equipment, resulting in costly chargebacks and downtime.

After the Sandtinel though, we see a totally different story. Not only was the separator able to remove over 99% of the sand in the system, but the median particle size in the remaining sand in the system was only 73 microns, or about 200 mesh in size. As most experienced people in the industry may know, erosion is proportional to sand size, with larger sand being more damaging. These remaining sand fines, on a pound per pound basis, are only about 30% as damaging and wearing for the flowback iron as the original 60 mesh sand grade. Combined with the 99% overall sand removal, we reduced the overall erosion in the system by 99.7% with a single 48” Sandtinel Maverick.

Sandtinel is able to achieve this kind of reduction in wear and erosion without the use of any filters, external power supply, or sacrificial parts, thanks to the power of the VL-TEK Vapor Lock. Spherical separators with the Vapor Lock system achieve a level of sand separation efficiency unheard of in other mechanical separators on the market, all while also maintaining the lowest fugitive gas emissions of any sand separator on the market today. At Sandtinel, we believe that efficient sand separation shouldn’t come with a compromise to safety, production, or the environment. Talk to our knowledgeable sales team today to find out what the value of a Sandtinel sand separator can be for your application.

Check out the field trial.

Why upgrade to a spherical sand separator? Vertical cyclonic sand separators have been around for years, and everyone is comfortable with them. That was the conventional wisdom we set out to challenge when we brought Sandtinel sand separators into the field in 2014. Since then, we’ve learned a lot about how cyclonic separators work – and what we’ve found is that just because one way of doing things is comfortable and familiar, doesn’t mean it’s the right choice. In our newest study, we dig into the seven most important factors in sand separator performance and compare Sandtinel’s Vapor Lock spherical separators to the generic vertical cyclonic separators which have been on the job for decades.

Although they are widely used, vertical cyclonic separators really have two main advantages over other separator designs. First, it’s easy to remove sand from them, as you can simply open the drain line on the bottom. Second, they are easy and cost-effective to build for very high pressures, up to 10 ksi or even 15 ksi pressure ratings. These factors make them a convenient and low-cost option for sand removal. However, convenient and low-cost doesn’t necessarily translate into the separator’s real job, which is actually removing sand. In many cases, operators have had to stack two, three, or even larger numbers of cyclonic sand separators in front of each other to try to approach the effectiveness of a single high efficiency sand separator.

Sandtinel’s spherical sand separators were found to outperform cyclonic separators on four key performance criteria: sand removal efficiency, sand storage capacity, fugitive emissions release, and turndown operation at low flow rates. Vertical cyclonic separators were found to have a poor separation efficiency; in one featured trial in our study in the Permian basin, a downstream Sandtinel spherical separator actually caught more sand than an upstream cyclonic sand separator. The storage capacity of vertical cyclonic separators is sharply limited, requiring frequent dumping to remove accumulated sand. These frequent dumps also come with a cost: Sandtinel found a high fugitive emissions release during the dump stage of a vertical cyclone, between 2x and 55x more gas than is released during a comparable sand dump operation on a Sandtinel sphere. Vertical cyclones were also found to be vulnerable to turndown at low flow rates, dropping sharply in efficiency once the flow rate of a well fell below a critical threshold.

Just because vertical cyclonic sand separators are common, doesn’t make them a good choice for your well. As wells are seeing higher flowrates and sand sizes are getting smaller in recent years, sand separators are becoming an ever more important component of a successful flowback operation. You need a high efficiency sand separator which can keep up with the demands of the modern flowback and production environments – and the cyclones of 40 years ago aren’t cutting it anymore. Take a look at our newest comparison report where we dig into the specific improvements Sandtinel spherical sand separators bring to the field compared to generic vertical cyclones. Contact our sales staff today to see how Sandtinel’s separators can upgrade your flowback and production and save you on dangerous erosion, costly downtime, and unnecessary chargebacks.

Not all spheres are created equal.

That’s the lesson that producers have learned in the Permian basin. Traditionally, options for sand separators have been limited to using either low storage and flow-sensitive vertical cyclonics, or low efficiency generic spheres to manage sand. Functional differences in technology, design, innovation, and quality of material may not be apparent on the surface but ultimately impacts overall production in addition to bottom-line. Making it crucial for decision makers to understand the differences between separator technologies and how to manage produced sand most effectively.

Our newest report in the Sandbox shows proven field results comparing Sandtinel’s spheres using patented Vapor Lock technology against generic spherical separators that have been on the ground for more than 10 years. Generic spheres, such as the “Super Sand Hog” or “NOV Sand Trap”, have proven to have low separation efficiency and high back pressures which lead to reduced overall production.

A recent paper from Occidental Resources submitted at URTeC found in the Wolfcamp that “an aggressive flowback strategy can speed up the production rate tremendously early in the life of a well.” “An aggressive flowback […] opens the choke quickly to full capacity if there is no sand control issue.”1 One of the biggest limits on running an aggressive strategy is having sand management that you can rely on at high rates of production.

Sandtinel is a sphere that you can trust, with an operating envelope up to 4,000 BBL/day higher than generic spheres. Our efficiency promise is a minimum of 95% sand removal of 100 mesh sand, and producers all over North America have seen the difference. Generic spheres are old technology with low storage capacity, low efficiency, and high fugitive GHG emissions. Our Sandtinel team is excited and eager to show you the difference that Vapor Lock technology can make for your flowback.

Don’t let a subpar sphere be the bottleneck in your flowback. Take a look at our newest report and decide for yourself which sand separator you want to trust your equipment with.

phone-handsetcross-circle linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram